Ceramic Composites Derived from Nb/Al2O3-Filled Polysilsesquioxane

Author:

Schiavon Marco Antônio1,Yoshida I.V.P.,Silva A.C.2,Acchar Wilson3

Affiliation:

1. UNICAMP

2. Universidade Federal do Rio Grande do Norte

3. Federal University of Rio Grande do Norte

Abstract

Ceramic matrix composites (CMC) were prepared by the active-filler-controlled polymer pyrolysis process (AFCOP) using a polysilsesquioxane resin filled with metallic niobium and alumina powders. Samples containing 60 wt% of polysilsesquioxane and 40 wt% of metallic niobium and alumina powders mixtures were homogenized, uniaxially pressed and pyrolysed in an alumina tube furnace up to 1400 °C, under argon flow. The ceramic products were characterized by X-ray diffraction (XRD), thermogravimetry (TGA), differential thermal analysis (DTA), Fourier transform infrared (FTIR) and energy-dispersive (EDS) spectroscopies. XRD analysis of the products showed the presence of crystalline phases such as NbC, Nb3Si, Nb5Si3, SiC, crystoballite and mullite. Thermogravimetry data of the composites presented low weight losses at 1000 °C. DTA curves showed an endothermic peak at 1350 °C, which was associated to the beginning of carbothermic reduction and/or the formation of silicon oxide and carbide. In addition, an exothermic peak at 1400 °C was associated to the formation of the mullite phase.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3