A Surface Modification Method by EDM and Its Application to Cutting Tools

Author:

Zhao Wan Sheng1,Fang Yu2,Wang Zhen Long2,Li L.H.2

Affiliation:

1. Shanghai Jiao Tong University

2. Harbin Institute of Technology

Abstract

This paper describes a new surface modification method by Electrical Discharge Machining (EDM) to create a hard ceramic layer on the workpiece. When a kind of metallic material that makes hard carbide is used as an electrode of EDM, hard ceramic layer can be deposited in a certain condition in the process of EDM. In this paper, characteristics of the layer and the application of this method to cutting tools are discussed. First, the principle of this surface modification method is shown. Secondly, the characteristics of the layer are studied in detail. Through the discuss of wear characteristics of the electrode and formation characteristics of the layer, it can be found that there are some distinct differences between the traditional EDM technology and this new EDM surface modification method. Thirdly, the micro-hardness test of the layer at the different distance from the base metal is carried out. It shows that there is a hard area also under the surface of base metal. At last, as an application of EDM surface modification method, cutting test of cutting tools is done, and it confirms that the life of the cutting tool by EDM surface modification is much longer than that of without layer.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference8 articles.

1. W.X. Chu: Tool Engineering Vol. 34(2) (2000), p.3.

2. W.S. Zhao: Electrical Discharge Machining Technology (Harbin Institute of Technology Press, China 2000). (in Chinese). 0 1 2 3 4 5 Cutting distance (m) Flank wear (mm) Fig. 13 Curve of tool life Non-coated EDM-coated Damaged 0.

3. 1.

4. 2.

5. 3.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3