Optical Properties and Carrier Transport in a Biased GaAs/AlAs Asymmetric Quintuple-Quantum-Well Superlattice

Author:

Yoshida Kousuke1,Goto Shoji1,Wang Rui1,Hosoda Makoto2,Akahane Kouichi3,Ohtani Naoki1

Affiliation:

1. Doshisha University

2. Shizuoka University

3. National Institute of Information and Communications Technology

Abstract

Photoluminescence (PL) properties and carrier transport in a GaAs/AlAs asymmetric quintuple-quantum well superlattice (AQQW-SL) were investigated. Since AQQWs are separated by very thin AlAs barriers, various carrier transport phenomena are expected due to the strong coupling of wave functions between the Γ states in the GaAs QWs and the X states in the AlAs barriers. A 20-period AQQW was embedded in the i-layer of a pin diode. A PL signal between the ground Γ and the heavy hole (hh) states was observed around 740 nm. However, another PL branch was observed at about 665 nm around 6 V. Based on the numerical calculation of the Γ and X wave functions, the electron transport from the X state in the thick AlAs barrier (X11) to the Γ state in the third QW (Γ31) occurs at 6.1 V. Thus, a PL signal at 665 nm can be attributed to the recombination between Γ31 and hh11.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3