Effect of Ag, In and AgIn Alloying Additions on Microstructure and Texture of Mg-3Al-1Zn Alloy during Multi-Pass Warm Rolling

Author:

Kamran Javed1,bin Awais Hasan1,Tariq Naeem Ul Haq1,Wang Yin2

Affiliation:

1. Pakistan Institute of Engineering and Applied Sciences (PIEAS)

2. University of Manchester

Abstract

In the present investigation the rolling response, microstructure and texture evolution of four Mg alloys during multi-pass warm rolling were evaluated. The nominal composition of the base alloy (alloy-1) was Mg-3Al-1Zn. The alloy-2, 3 and 4 were developed by separate additions of non-rare earth elements Ag and In, and a master alloy 85Ag15In (wt.%) to make target compositions Mg-3Al-1Zn-0.5x, (x = Ag ,In, AgIn). Samples from all four alloys were subjected to multi-pass warm rolling at 300 °C to accumulative reductions of 50, 75 and 90% with 8 minutes inter-pass annealing. For all four alloys, crack free sheets of less than 1 mm thickness were produced successfully with true strain corresponding to 90% reduction. The as-cast microstructures revealed second phase particles at grain boundaries and grains interiors for all alloys. A slight scatter in the size of the deformed grains was observed for alloy-1, 2 and 3 after rolling reductions of 50, 75 and 90%. However, a sustained decrease in grain size with increasing the rolling reductions was only observed in alloy-4, despite inter-pass annealing. XRD macro-texture results of alloy-2 and 3 presented very strong basal texture showing almost concentric contours around normal direction (ND). Such strong sheet texture is attributed to a preferential alignment of basal planes parallel to the sheet surface. On the other hand alloy-1 and alloy-4 revealed a weaker texture with basal poles spread more towards transverse direction (TD) as compared to rolling direction (RD) and may be due to the activation of some <c+a> non-basal slip and twinning in addition to basal slip under the same processing parameters.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3