Effect of Water Depth on the Microstructure and Mechanical Properties of SS400 Steel in Underwater Welding

Author:

Yohanes Peringeten1,Nurul Muhayat1,Triyono 1

Affiliation:

1. Universitas Sebelas Maret

Abstract

The application of underwater welding is for repairing the damage underwater structures and oil pipelines to extend the lifetime of the facilities. Generally, underwater welding studies were performed in shallow depth water. It is important to investigate the properties of the underwater welding joint based on the depth of water in meter scale. In this work, the shielded metal arc welding (SMAW) was used to conduct the welding process of SS400 low carbon steel. The water depth of 2.5 m, 5.0 m, and 10.0 m were evaluated, while the welding electric current were varied in the range from 80 A to 110 A. Underwater welding processes were carried out using the E7016 electrode. Non-destructive and destructive tests were conducted including the X-ray analysis, microstructure investigation, tensile, and hardness tests. The X-ray analysis showed that there were many defects for all underwater welding specimens. The water depth of 2.5 m joint specimens provided the highest tensile strength. It decreased as increasing of water depth level. Stability of welding arc due to the water pressure was the main reason. Tensile strength increased slightly as the welding current increasing due to deeper penetration. For all specimens, the highest hardness was found in the HAZ which was adjacent to the fusion zone.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3