Microscopic Structure and Adsorption Properties of the Terpenoids-Based Adsorption Material

Author:

Zhang Ling1,Zhan Zhao Lin1,Li Chun Lin2,Zhang Tian Dong3,Gao Rui3,Yang Jian Yun3,Yu Xiao Hua1

Affiliation:

1. Kunming University of Science and Technology

2. Institute of Metal Research

3. China Tobacco Yunnan Industrial Co., Ltd

Abstract

In this paper, a new type of natural adsorption materials were prepared by spray granulation. The structure and properties of the product were characterized by scanning electron microscope analysis, N2 adsorption desorption analysis, infrared analysis, X ray diffraction analysis, the rmogravimetric analysis. The results showed that: the best preparation conditions of the adsorption materials were as follows: the temperature was 59.21°C, the pressure was 0.28 Bar, and the rate was 14.15 ml/min. In addition, the natural materials had high porosity and specific surface areas , which was better for adsorption. The pore size was mainly concentrated between 13 ~ 28nm. Moreover, these materials had more functional groups. The decomposition temperature was 250°C,which resulted in better thermal stability. Consequently, the materials had better adsorption properties, and the materials will have better application prospect.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3