Structure and Phase Composition of a Ti Film–Al Substrate System Irradiated with an Intense Pulsed Electron Beam

Author:

Ivanov Yurii1,Krysina Olga V.1,Moskvin Pavel1,Petrikova Elizaveta A.1,Ivanova Olga V.2,Tolkachev Oleg S.1

Affiliation:

1. Siberian Branch of the Russian Academy of Sciences

2. Tomsk State University of Architecture and Building

Abstract

Commercially pure A7 aluminum was exposed to surface modification in a single vacuum cycle which included vacuum arc evaporation and deposition of commercially pure titanium and intense electron beam irradiation and melting of the film–substrate system using a plasma-cathode pulsed electron source. The deposited Ti film thickness was 0.5 and 1 μm. The irradiated Ti–Al system revealed a multilayer multiphase structure consisting of submicro-and nanosized elements with intermetallic inclusions Al3Ti, Al2Ti, and TiAl3. The Ti film during irradiation broke up into fragments with their immersion in the molten Al surface layer to a depth of 20 μm. The modified material surpassed the initial aluminum in wear resistance by a factor of 2.4 and in microhardness by a factor larger than 4. The main cause for the high surface hardness and high wear resistance of the modified aluminum was likely the formation of both the intermetallic particles and the Ti-hardened transition layer.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3