Variational Solution of Steady-Structure in Exciton-Polariton Condensates with a Modified Lagrangian Approach

Author:

Zhang Jian Wei1,Chen Hai Jun2,Wang Sheng Jun1,Ren Yuan1

Affiliation:

1. Space Engineering University

2. Longdong College

Abstract

Exciton-polariton condensate is a new kind of system exhibiting spontaneous coherence, which is a new quantum dissipation system. Numerical simulation and analytical methods can be used to study the static and dynamical properties of exciton-polariton condensate. In this paper, A modified Lagrangian method is developed for exciton-polariton system to find the steady-state structure and regimes among the parameters of the system, and two new forms of trial wave function are proposed. The modified Lagrangian method is successfully applied to the exciton-polariton system described by the open-dissipative Gross-Pitaevskii equation for the first time. Furthermore, static version of the modified Lagrangian method provides stationary shape of the steady-state structure, while the time-dependent version can be used to study small amplitude oscillations around stationary states. On the one hand, comparison of the profiles for steady-state structure, predicted by the modified Lagrangian and those found from numerical solution of the open-dissipative Gross-Pitaevskii(dGP) equation shows good agreement, thereby proving the accuracy of the trial wave function and validating the proposed approach. Particularly, this new method promotes the deeper cognition and understanding for the dissipative exciton-polariton system and is helpful to explore the mechanism of the gain and dissipation effect on the steady-state structure of the system.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3