Investigation on Forming Behaviour of Sheet Metal by Test Using Cylindrical Cup with Hole

Author:

Watcharasresomroeng Bhadpiroon1

Affiliation:

1. Rajamangala University of Technology Suvarnabhumi

Abstract

Nowadays, there are several grades of sheet metal used in the automotive industry. Highstrength steel sheets, particularly, have been widely used in order to reduce the weight of vehicles,which is strongly related to their fuel consumption rate. However, it is generally known that thestrength of the sheets, which is relatively higher than that of the conventional carbon steel sheets,results in their low formability. In this work, the limiting drawing ratio and forming behavior of sheetmetal that is conventionally used for automobile parts were evaluated by test using cylindrical cupwith hole. The feasibility to use limiting cup height for comparing formability of sheet metal was alsoincluded in the investigation. The sheet materials used in the experiments are aluminium, cold rolledsteel, high strength steel and advanced high strength steel. The process parameters for this study weredie corner radius and blank holder force. Workpiece materials were prepared with a circular shapeand with a diameter of 80 millimetres. In the center of the circular workpiece, a 12-millimetrediameter hole was drilled to observe the formability of each of the materials. The advantage of usingan initial blank with a hole in the center by the cylindrical cup drawing test is that the cup does notfail from changes of the thickness of material near the punch radius at the bottom of the cup. Thelimiting cup height of the investigated materials were evaluated by test using the cylindrical cup withhole. The results show that the limiting cup height values have a relationship to the limiting drawingratio values of the investigated materials. Testing using cylindrical cup with hole by evaluating thelimiting cup height value is feasible for comparing the formability of sheet metals.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3