Control of Au Nanoparticles Structural and Optical Properties by Laser Radiation and Thermal Annealing

Author:

Medvids Arturs1,Mychko Aleksandr1,Onufrijevs Pavels1,Grase Līga1,Suzuki Ryutaro1,Kondoh Jun2

Affiliation:

1. Riga Technical University

2. Shizuoka University

Abstract

The aim of this study is to show the possibility to control structural and optical properties of Au nanoparticles (AuNPs) by changing their size and concentration and make comparison between methods of their formation. 1.4 nm thick Au films were formed on borosilicate glass substrates by the vacuum evaporation method. AuNPs were formed on the surface of the substrate by two methods. First is the irradiation by the Nd:YAG laser pulses with intensities from 75 to 180 MW/cm2. Second is thermal annealing, at temperature T=400 °C and the time of curing was varied from 24 to 72 hours. The irradiation of Au film by laser leads to formation of AuNPs. The increase of intensity of laser radiation causes the disappearing of small Au nanoparticles and growing of big nanoparticles from 113-180 nm due to the agglomeration of small particles into big ones and, correspondingly, concentration of particles decreases. In contrast, thermal annealing at T=400 °C from 48 to 72 hours leads to the island formation with the non-spherical shape and their dividing into several islands according to the spinodal dewetting model. As a result, the mean diameter of AuNPs is decreased from 161 to 85 nm but concentration increases.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3