Affiliation:
1. Institute of Materials Research of the Slovak Academy of Sciences
Abstract
Finite element modelling (FEM) and eXtended FEM (XFEM) combined with the experimental nanoindentation and scratch tests have been used to simulate the process of cohesive cracking in W-C coating on softer and more ductile steel substrate during nanoindentation and scratch testing. The formation of single and multiple circular “frame” cohesive cracks in the sink-in zone during nanoindentation were explained by the development of high local tensile stresses in the coatings controlled by the plastic deformation of the substrate. Analogous mechanisms were successfully applied to the simulation of multiple Chevron type cracking during scratch testing. Thus, the ability of XFEM to predict the formation of different types of cohesive cracks was confirmed. It was also demonstrated that both nanoindentation and scratch tests in combination with XFEM can be used as the methods to determine the strength and fracture toughness of thin coatings.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献