Electrical Properties of Nanostructure n-ZnSe/p-Si(100) Heterojunction Thin Film Diode

Author:

Wongcharoen Ngamnit1,Gaewdang Thitinai1

Affiliation:

1. King Mongkut’s Institute of Technology Ladkrabang

Abstract

The ZnSe/Si heterojunction is of specific interest since this structure provides effective solar cell and enables the integration of wide bandgap device in silicon circuits. It is known that the quality of the diode and the current transport mechanisms across the heterojunction may be greatly influenced by the quality of the interface and depends on the crystallinity of the film layer. In this work, n-ZnSe/p-Si (100) heterojunction was fabricated by thermal evaporating ZnSe thin films on p-Si (100) substrates. The current-voltage characteristics of n-ZnSe/p-Si (100) heterojunction were investigated in temperature range 20-300 K. Some important parameters such as barrier height, ideality factor and series resistance values evaluated by using thermionic emission (TE) theory and Cheung’s method at room temperature are n = 2.910,φB0= 0.832 eV and 8.59103Ω, respectively. The temperature dependence of the saturation current and ideality factor are well described by tunneling enhanced recombination at junction interface with activation energy and characteristic energy values about 1.293 eV and E00= 95 meV, respectively. The carrier concentration of ZnSe thin films about 3.16×1013cm-3was deduced from the C-V measurements at room temperature. Admittance spectroscopy was employed for analysis of the defect energy levels situated in depletion region. The results showed that there was a single trap level whose position in the band gap was close to 0.04 eV above valence band. The results of this work may be useful for application such as heterojunction solar cells.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3