Application of Acoustic Emission Method and Impact Echo Method to Structural Rehabilitation

Author:

Pazdera Luboš1,Dvořák Richard1,Hoduláková Michaela1,Topolář Libor1ORCID,Mikulášek Karel1,Smutny Jaroslav1,Chobola Zdenek1

Affiliation:

1. Brno University of Technology

Abstract

The paper is concerned with the technical aspects of the appraisal and retrofitting process of fire damaged reinforced concrete structures. The assessment of fire damaged structures is carried out along lines similar to those of the appraisal of existing structures. In practice, constructions are most often assessed by destructive tests in-situ and on core bore specimens. In addition to destructive tests, damaged structures are also assessed by non-destructive ones. The present paper shows the use of non-destructive methods of measurement using the acoustic-emission and impact-echo methods. Acoustic emission provides valuable data on the structural integrity of a material. This method has a significant potential to be used for in-situ monitoring and evaluation of the current state of structures. An impact-echo method is based on impact-generated stress waves that propagate through concrete and are reflected by internal flaws and external surfaces. Impact-echo can be used to determine the location and extent of flaws such as crack delamination, voids, honeycombing and deboning in plain, reinforced, and post-tensioned concrete structures. The paper presents a possible rehabilitation plan based on the potential results obtained by these non-destructive methods.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3