Preparation of Near-Infrared (NIR) Reflective Pigment by Solid State Reaction between Fe2O3 and Al2O3

Author:

Busabok Chumphol1,Khongwong Wasana1,Somwongsa Phunthinee1,Ngernchuklin Piyalak1,Saensing Arunrat2,Kanchanasutha Sittichai2

Affiliation:

1. Thailand Institute of Scientific and Technological Research

2. Thauland Institute of Scientific and Tecnological Research (TISTR)

Abstract

Reflective pigment was prepared by using Fe2O3 and Al2O3 as starting materials. Fe2O3 and Al2O3 powders were mixed at 0.8:2, 1:2 and 1.2:2 mole ratio using ball milling. The mixed powders were dried and calcined at temperature of 1500°C, 1600°C and 1700°C for various soaking time at 2, 8 and 20 h. Phase data were analyzed by x-ray diffractometry. It was found that (Al1-x, Fex)2O3 presented as a new phase in calcined powders at temperature of 1500°C to 1700°C for 2 h. The other new phase such as FeAl2O4 was detected in calcined powders at temperature of 1700°C for 8 and 20 h. From the experimental results indicated that complete reaction was occurred when higher calcination temperature and longer soaking time were used, resulting in spinel structure (FeAl2O4) generated. Then, the synthesized powders were mixed with exterior paint by mass ratio of 0:100, 10:90, 20:80, 30:70 and 40:60, respectively. The mixed paints were sprayed on metal sheets. Then the coated metal sheets were exposed under 200 watts lamb and measured the temperature difference between the exposed side and opposite side. The result showed that at the ratio of 30:70 exhibited the highest temperature difference of 14°C approximately. From the result, we concluded that spinel structure (FeAl2O4) is a candidate for near-infrared (NIR) reflective pigment of exterior paint.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3