Characterization and Modelling of Multiple Intralaminar Cracking Initiation under Tensile Quasi-Static and Fatigue Loading

Author:

Ben-Kahla H.1,Varna Janis1

Affiliation:

1. Lulea University of Technology

Abstract

The first failure mode in tensile quasi-static and in tension-tension fatigue (cyclic) loading of composite laminates is intralaminar cracking in layers with off-axis fiber orientation. These tunnel-building cracks are result of combined action of in-plane transverse and shear stresses. We assume that due to non-uniform fiber distribution (clustering) which leads to local stress concentrations, different positions in the layer have different resistance to crack initiation (initiation strength). If so, the weakest position in quasi-static loading is also the weakest in fatigue and some of the distribution parameters for fatigue behavior can be obtained in quasi-static tests, thus significantly reducing the number of required fatigue tests. Methodology is suggested and validated for cases when the cracking is initiation governed-initiated crack almost instantly propagates along fibers. Distribution parameters are identified using data in low crack density region where stress perturbations from cracks do not interact. Monte-Carlo simulations are performed for cracking in layers under quasi-static and cyclic loading using novel approach for computationally efficient stress state calculation between existing cracks.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3