Characteristic and Erosion Study of Uncoated Sand Proppant Using Impingement Test

Author:

Jarni Husna Hayati1,Zin Rohani Mohd1,Bakar Noor Fitrah Abu1,Rahman Norazah Abd2,Shaari Norin Zamiah Kassim1,Othman Nur Hidayati1

Affiliation:

1. Universiti Teknologi MARA

2. Faculty of Chemical Engineering

Abstract

The characterization and properties of sand from beaches in Malaysia that has potential to be used as proppant in hydraulic fracturing was investigated through impingement tests. Eight sand samples were obtained from eight different locations in Malaysia; three samples from West Coastal beaches (Selangor) and five from East Coastal beaches (Kelantan). These impingement tests were conducted by varying several parameters i.e. size ranges of sand, type of targeted metal and distance of nozzle standoff from target. In these tests, air was fed through an acrylic pipe with inner diameter of 8 mm and 4 m length at gas velocity of 100 m/s and flow rate of 200 l/min. 250 g of sand samples were fed in compressed air stream and the samples were projected toward targeted metal i.e. mild steel and aluminium with a 90° of impingement angle. These tests were conducted at different separation distance of 0.5, 2.5 and 5.0 inches of nozzle and target. The results were analysed by measuring the mass loss of the metals after impingement and the images of the impinged metals were captured using camera. The highest metal loss was obtained when the targeted metal was impacted with the largest size range of sand samples. The mass loss of mild steel ranged from 0.03 to 0.16 g and 0.10 to 0.22 g for aluminium, at a variable distance between the nozzle and metal target due to higher hardness of mild steel than aluminium. The mass loss reduced when the distance between nozzle and metal target increased due to energy loss because of the inter particle collision.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3