Polypropylene Based Piezo Ceramic Compounds for Micro Injection Molded Sensors

Author:

Doerffel Christoph1,Decker Ricardo1,Heinrich Michael2ORCID,Tröltzsch Jürgen1,Spieler Mirko1,Nendel Wolfgang1,Kroll Lothar1

Affiliation:

1. Chemnitz University of Technology

2. Fraunhofer Institute for Machine Tools and Forming Technology IWU

Abstract

Polymer matrix compounds based on piezo ceramic and electrically conducting particles within a thermoplastic matrix show distinctive piezoelectric and dielectric effects which can used for sensor applications. The electrical and mechanical properties can be adjusted in a wide range by varying the ratio of active filling particles and the matrix materials. The sensor effect of the compound is generated by the ceramic particles. A large ratio of piezo ceramic powder facilitates a high sensitivity. The electrical permittivity of the otherwise insulating matrix polymer can be adjusted by the amount of conductive filler. An aligned permittivity leads to a stronger electrical field in the ceramic particles. In contrast, too many conductive particles create a conductive network in the compound which short-circuits the sensors. The piezo ceramic compounds can be processed via micro injection molding for application as ceramic sensors. This offers a wide range of new sensor design variants, notably three-dimensional and highly complex geometries. However, there are two main demands for a highly sensitive sensor, which are conflicting. On the one hand the filler content of piezo ceramic particles in combination with electrical conductive carbon nanotubes must be very high, on the other hand the wall thickness should be as thin as possible. For filling cavities with a high aspect-ratio in an injection molding process, low viscosity polymer melts are necessary. These process characteristics conflict with the increasing viscosity by filling the melt with the particles. The sensor measuring area has to be designed as thin walled as possible. In order to overcome this obstacle a dynamically tempered mold design is applied to avoid solidification of the melt, before the mold is completely filled. The mold can be tempered by Peltier elements. The fully electric tempering is cleaner, more precise and more reliable than conventional water or oil tempering.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3