Affiliation:
1. Riga Technical University
2. Université Abdelhamid Ibn Badis - Mostaganem
Abstract
This work focuses on clay ceramic hollow spheres (CCHS) preparation using Liepa clay and sacrificial template method in a lab scale device and testing of their properties. Water retention and compression strength were investigated in order to found out if obtained CCHS can be used as an additive for improving soil resilience.The synthesis and characterization of CCHS using expanded polystyrene spheres (EPS) as sacrificial template is presented. CCHS were fired at five different temperatures and their compressive strength, water retention, bulk density, material density, water absorption, phase composition, surface morphology, porosity using hydrostaticweighing and BET nitrogen adsorption methods, were determined.Study of clay ceramic hollow sphere structure and surface morphology revealed that all samples have spherical shape. These spheres have several pronounced protrusions from the granulation process. Clay ceramic hollow spheres have porosity rate of 21 - 36% and a water absorption rate of 15 -33%. The highest rate of porosity and water absorption was observed for hollow spheres fired at 1050°C.The increase of clayceramic hollow spheresfiringtemperature led to decrease of specific surface area-thehighestvaluewas observed at950°C and the lowest at 1150°C. The bulk density increased at 1150°C.Mechanicalstrength test of ceramic hollowspheres(HS)revealedthat with the increase of scorchingtemperature the compression strength of the spheres increasedas well.The sphere hollowshadpractically globular shape with the averagewallthickness of0,6 mm, whichcomprises10-13% ofthe outer diameter.The obtained clay ceramic hollow spheres are proposed as water retention agent.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献