Wear Behaviour of Coated Cemented Carbide Inserts in an Oxygen-Free Atmosphere when Machining Ti-6Al-4V

Author:

Denkena Berend1,Dittrich Marc André1,Krödel Alexander1,Worpenberg Sebastian1,Matthies Jonas1,Schaper Florian1

Affiliation:

1. Leibniz Universitaet Hannover

Abstract

The machining of difficult-to-cut materials such as titanium plays a key role in several industries such as aerospace or medical. Approaches to overcome many difficulties when machining these materials can be an appropriate coating system for cemented carbide cutting tools. However, the atmosphere under which machining takes place, influencing the chemical tool wear, has not been taken into consideration. This work examines the tribochemical wear resistance of TiN, TiAlN and CrAlN coated carbide tools under different atmospheric conditions when cutting Ti6Al-4V. Air, technically pure argon and silane-doped argon is used to determine the influence of different oxygen levels on the wear behaviour of the tools. It has been found that oxidation of tools and tool coatings plays a significant role in tool wear when dry cutting titanium. Best results were generated using CrAlN and uncoated inserts where an increase in tool life up 50 % can be achieved when cutting in oxygen levels corresponding to extreme high vacuum (XHV) adequate atmospheres by using silane-doped argon. The benefits of XHV adequate atmospheres also have an effect on TiAlN-and TiN based coatings, but the chemical interaction of Ti element in the coating with the workpiece material, which presumably reduces wear resistance of cutting tools, cannot be outweighted or equalised by applying oxygen free atmospheres.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3