Biomechanics of Surface Runoff and Soil Water Percolation

Author:

Deng James Makol Madut1,Makinde Oluwole Daniel2

Affiliation:

1. African University of Science and Technology

2. Stellenbosch University

Abstract

In this study, the complex interaction of surface runoff with the biomechanics of soil water transport and heat transfer rate is theoretically investigated using a mathematical model that relies on the two phase flows of an incompressible Newtonian fluid (stormwater) within the soil (porous medium) and on the soil surface (runoff). The flow and heat transfer characteristics within the soil are determined numerically based on Darcy-Brinkman-Forchheimer model for porous medium coupled with the appropriate energy equation while analytical approach is employed to tackle the model for interacting surface runoff stormwater. The effects of various embedded biophysical parameters on the temperature distribution and stormwater transport within the soil and across the soil surface together with soil-runoff interface skin friction and Nusselt number are display graphically and discussed quantitatively. It is found that an increase in surface runoff over tightly packed soil lessens stormwater percolation rate but enhances both soil erosion and surface heat transfer rate.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3