Prediction of Shortening and Material Grain Size after Extrusion Using the ECAP Method

Author:

Harničárová Marta1,Valíček Jan1,Kušnerová Milena2,Kopal Ivan3,Litecká Júlia4,Kadnár Milan1,Kmec Ján2,Palková Zuzana1

Affiliation:

1. Slovak University of Agriculture in Nitra

2. Institute of Technology and Businesses in Ceske Budejovice

3. Alexander Dubček University of Trenčín

4. University of Presov in Presov

Abstract

Equal channel angular pressing (ECAP) is a widespread severe plastic deformation (SPD) method to fabricate ultrafine-grained bulk materials. In the field of materials engineering, this method has already experienced rapid development over the past few decades. In this research, the authors sought to create a prediction of shortening and the material particle size after extrusion using ECAP. Behaviours of essential functions are analysed here on samples of pure copper Cu 99.9. It is the measurement and analytical processing of changes in the values of selected structural and mechanical parameters depending on the reduction of the structural granularity. Parameters such as deformation speed, deformation work and ECAP mechanical performance are also included in the results. The change in structure and mechanical parameters is also newly demonstrated by measuring the change in the velocity of the longitudinal ultrasound wave during the experimental passes. Based on the results obtained, new computational algorithms for Excel and Matlab were developed. The algorithms developed here contain many new findings, conclusions and derivations addressing the integrity of the surface with the inner structure of materials. Algorithms are very well-suited for obtaining results on different materials quickly, for predicting and checking measured values, and for designing optimal measurement technology parameters for the ECAP method.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3