Affiliation:
1. Bangladesh University of Engineering and Technology
2. North Carolina A&T State University
Abstract
The thermophysical properties as well as the thermal performance of a nanofluid can be altered upon varying the nanoparticle type and/or nanoparticle volume concentration. Herein, the effects of variable nanoparticle concentration on water-based TiO2, SiO2, TiC, and SiC nanofluids have been studied analytically. The dispersion effects of 1-4% nanoparticle on the single-phase forced convection heat transfer performance of the nanofluids have been investigated. The effective thermophysical properties of the nanofluids are determined adopting the general correlations. The flow velocities of the nanofluids relative to their base fluids are assumed to be constant. Mouromtseff number has been employed as a convenient figure of merit to compare the nanofluids under fully developed internal laminar and turbulent flow conditions. The results indicate an increase in effective density, thermal conductivity, and dynamic viscosity of the nanofluids. Nanofluids containing carbide suspensions exhibit superior heat transfer properties compared to those having oxide suspensions.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Radiation