Affiliation:
1. Universiti Malaysia Sarawak
2. Universiti Teknologi Malaysia
Abstract
Commonly, the synthesis of ZnO nanowires involves the use of metal catalyst via a non-direct step growth which contribute to the contamination on the final product. Thus, in this work we synthesized catalyst-free ZnO nanowires using a direct or single step growth of nanowires. Thermal evaporation method is used to synthesize ZnO nanowires on bare glass substrates with different distances between Zn powder and the substrates; on-top (1.2 cm), 16 cm and 18 cm. Field Emission Scanning Electron Microscopy images showed a vertically well-aligned with high density of ZnO nanowires were successfully synthesized via self-seeding process and the longest nanowires were produced at the shortest distance. Energy Dispersive X-ray and X-Ray Diffraction analyses confirmed that high purity of ZnO nanowires were obtained and ZnO (002) strongest and sharp peak was observed, indicating preferentially grown ZnO nanowires along the c-axis perpendicular to the substrates and leading towards single crystal structure. Four peaks were observed in visible range from Photoluminescence spectra (PL) which related to fundamental defects with the highest peak at 3.04 eV. The on-top sample with distance 1.2 cm from Zn powder has the lowest transmittance due to the high thickness of ZnO nanowires. The range of energy band gap for ZnO nanowires obtained from the extrapolation graph is in agreement with PL highest peak approximately 3.00 eV. Therefore, this direct or single step deposition method is of great interest since it has successfully produced ZnO nanowires with significant characteristics without employing the non-direct step growth.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Radiation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献