Wear and Fatigue Behavior of PVD and MTCVD TiCN Coated Cemented Carbide Inserts in Turning Cast Iron

Author:

Skordaris Georgios1,Bouzakis Konstantinos Dionysios1,Stergioudi Fani1,Kouparanis Stefanos1,Boumpakis Apostolos1,Bouzakis Antonios2

Affiliation:

1. Aristotle University of Thessaloniki

2. Impact–BZ Ltd.

Abstract

TiCN coatings of the same chemical compositions were deposited on HW/K05-K20 cemented carbide inserts via physical (PVD) and medium temperature chemical vapor deposition (MTCVD) techniques. Nano-indentations coupled with appropriate FEM simulations were used for characterizing the film and substrate mechanical properties. Furthermore, uncoated cemented carbide substrates were annealed in vacuum at temperatures and durations corresponding to the related ones during the PVD and MTCVD process for recording the effect of the deposition temperature and duration on the substrate strength properties. Perpendicular and inclined impact tests at various loads were performed for checking the coating fatigue endurance and adhesion respectively. These material data were considered in FEM supported calculations for predicting the developed stress fields in the cutting edge during turning cast iron GG30 using the PVD and MTCVD TiCN coated inserts. According to the obtained result, both coatings possess the same stress-strain properties. Hereupon, the MTCVD coatings are characterized comparably to PVD ones by improved fatigue properties and adhesion strength. Although these properties contribute to an increased tool life in finishing turning, the significant reduction of the substrate strength properties, due to the elevated temperature during the MTCVD process, results in a premature coating failure and a consequent intensive wear evolution in roughing.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3