Scrutiny the Heat Transfer Effect in an Annulus by Mounting Axial Fins with Different Shapes: Without and with Taylor Number

Author:

Kebir Farouk1,Attou Youcef2

Affiliation:

1. Université des Sciences et de la Technologie d'Oran

2. Université de Mohamed Ben Ahmed Oran 2

Abstract

This study aimed to investigate numerically the heat transfer improvement and pressure drop inside annular channel of a rotor-stator provided with fins mounted on the stator without and with Taylor number. The impact of mounting various types of fins (triangular, rectangular, trapezoidal shapes with small and large base) is studied by varying the fin width b from 0 to 14 mm. In the presence of axial air flow, numerical simulations are carried out by solving the governing continuity, momentum and energy equations of turbulent flow in cylindrical coordinates using the Finite Volume Method. The results obtained by Reynolds Stress Model RSM model have indicated that the heat transfer enhances as the surface area of the fins and the effective Reynolds number increase, while there is an increase in pressure drop. Furthermore, we have shown that the presence of Taylor number has a slight increase in Nusselt number and pressure drop compared to the case without Taylor number. Among the four geometries, it is found that the rectangular cavity is the best geometry which gives maximum heat transfer and minimum pressure loss.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3