Effect of Mn Intermetallic Particle on Microstructure Development of P/M Al-Zn-Mg-Cu-Mn Alloy

Author:

Morimoto Yoshifumi1,Adachi Hiroki1,Osamura Kozo1,Kusui Jun2,Okaniwa Shigeru3

Affiliation:

1. Kyoto University

2. Toyo Aluminum K.K.

3. Nikkei Niigata

Abstract

The Mesoalite alloy is formed using rapidly solidified powder metallurgy (RS-P/M) by hot extruding the RS powder produced by the atomization method. Meso20 is a Mesoalite alloy with a chemical composition of Al-9.5Zn3Mg-1.5Cu-4Mn-0.04Ag (mass%). Meso20 contains fine grains and precipitated intermetallic Mn compounds, and has a tensile strength of 910 MPa. During hot extrusion, dynamic recrystallization occurs and the fine grains develop. During heat treatment of Meso20, rod-like and granular Mn intermetallic compounds precipitate. The rod-like compounds are about 1 Ìm in length and the granular compounds are about 1 Ìm in diameter. X-ray diffraction measurement, transmission electron microscopy and energy dispersive X-ray (TEM/EDX) analysis and Rietveld analysis revealed the chemical composition of the granular and rod-like Mn intermetallic precipitates to be 86.5Al-10.9Mn-0.4Cu-0.9Zn-1.3Mg and 80.5Al - 10.3Mn-4.2Cu-2.5Zn-2.5Mg (mass%), respectively. The granular and rod-like compounds were identified as the Al6Mn and Q phases, respectively, with both belonging to the space group Cmcm. The lattice constants of Al6Mn were a=0.754 nm, b=0.648 nm c=0.855 nm and those of the Q phase were a=0.765 nm b=2.34 nm c=1.25 nm. Meso10, with a chemical composition of Al-9.5Zn-3Mg-1.5Cu-0.04Ag (mass%), contains no Mn and does not have fine grains, but rather coarse fibrous grains elongated along the extrusion direction. Thus the Mn intermetallic precipitates in Meso20 clearly affect the formation of fine grains. Microstructure development was studied during hot extrusion by observation using high resolution Electron Back Scattering Pattern method. Fine grains were found to develop in areas, which were relatively abundant in granular Mn intermetallic precipitates.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3