Affiliation:
1. Hungarian Academy of Sciences
2. MTA Research Institute for Technical Physics and Materials Science
3. Budapest University of Technology and Economics
Abstract
Polycrystalline diamond and diamond-like carbon (DLC) films were deposited by microwave chemical vapor deposition (MW-CVD) and by pulsed laser deposition (PLD) respectively. Ar ion bombardment was used to change the properties of these layers. The sp2 bonds were determined directly by reflected electron energy loss spectroscopy (REELS) and further characterization was made by Raman scattering. The polycrystalline diamond showed only very slight π-π* transition at 6.5 eV, but after Ar ion bombardment strong peak was formed but definitely shifted to lower energy compared to the well known π-π* transition of graphite. The as deposited PLD carbon films showed broad peak around 5eV clearly different than the π-π* transition (6.5eV). After Ar+ ion bombardment the peak was shifted also to lower energy range (4-5eV) with a remaining part at 6.5eV. The lower energy part of the peak can be correlated to the transition of sp3 sites, while this change in peak position was not detectable after ion bombardment of the reference HOPG sample, which does not contain sp3 hybridized carbon atoms.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science