Ni Graphite Intercalated Compounds in Ohmic Contact Formation on SiC

Author:

Lu Wei Jie1,Michel J.A.2,Lukehart C.M.2,Collins W.E.1,Mitchel W.C.3

Affiliation:

1. Fisk University

2. Vanderbilt University

3. Air Force Research Laboratory

Abstract

Ohmic contacts on SiC have been investigated extensively in the past decade. However, the mechanism for ohmic contact formation has been a troublesome issue. The interfacial structures at the atomic scale responsible for forming ohmic contacts have not been revealed. Our previous results have shown that carbon can form ohmic contacts on SiC after thermal annealing, and that an interfacial carbon layer between Ni and the SiC improves the contacts significantly. In this study, we have investigated the interactions between Ni and carbon, and ohmic contact formation on SiC using x-ray diffraction (XRD) and Raman spectroscopy. After annealing, ohmic behavior was observed and Ni graphite intercalated compounds (GICs) were found on Ni/C/SiC structures. Unlike conventional graphite intercalated compounds, the Ni atoms substitute for carbon atoms in the graphitic networks in these Ni-GICs. XRD peaks at 21.6° due to the Ni graphitic intercalation compound (Ni-GIC) and at 26.3° due to graphite have been observed. The distance between graphitic sheets is 0.403nm in the Ni graphite intercalated compounds, whereas it is ~20% larger in the graphite. The thickness of the interfacial carbon layer does not affect the formation of Ni-GIC.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3