Research on GA-ANN Integration and Its Applications to Cold Extrusion Process Design

Author:

Ji Ting Wei1,Gao Jun2,Zhao Guo Qun3,Zhang Cheng Rui3

Affiliation:

1. Shandong Jianzhu University

2. Shandong University at Weihai

3. Shandong University

Abstract

Based on the research of the functions of ANN-based cold extrusion process design system, genetic algorithm (GA) is proposed to optimize the topology and parameters of artificial neural networks (ANN), in order to improve the running efficiency of the networks. The binary encoding approach is implemented to represent the GA chromosome. The code string or the chromosome was divided into three parts: the first part is the binary code of the cold extruded part; the second part is the binary code of the topology and parameters of ANN; the last is the binary code of the semi-cold-extruded-part or the billet. The 1/F(X) function is selected as the fitness function in GA, where, X represents the binary code of the cold extruded part, F(X) represents the error between the real outputs of ANN and the desired results; the biased roulette wheel selection method is used for selecting operation in this paper; two-point crossover and one-point mutation are selected for these two types of genetic operations. Finally, the typical cold extruded part is used for verification as an example by using the optimized ANN, the result shows that ANN optimized by GA has efficiency and validity in the cold extrusion process design system.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference6 articles.

1. K. Osakada and G.B. Yang: Int. J. Mach. Tools Manufact., Vol. 41 (1991) No. 4, pp.577-587.

2. H.S. Kim and T. Altan: Int. J. Mater. Proc. Tech., Vol. 33 (1992), pp.57-74.

3. D.J. Kim and B. M: Kim. Int. J. Mach. Tools Manufact., Vol. 40 (2000), pp.911-925.

4. Y.G. Lei, Y.H. Peng and X.Y. Ruan: Int. J. Mater. Proc. Tech., Vol. 112 (2001) No. 1, pp.12-16.

5. X.H. Zhang, Y.H. Peng and X.Y. Ruan: Int. J. Mater. Proc. Tech., Vol. 145 (2004) No. 1, pp.1-6.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3