Macro-Interface Characteristics of Bimodal-Structured Al Materials Produced by Ball-Milling

Author:

Chang Si Young1,Cho Han Gyoung1,Kim Jin Chun2,Lee Seong Hee3,Song Byung Heum1

Affiliation:

1. Hankuk Aviation University

2. Ulsan University

3. Mokpo National University

Abstract

The bimodal-structured materials composed of Al-5wt%Mg alloy and its composites reinforced with SiC and Al2O3 particles were prepared by ball-milling and subsequent compaction under the pressure of 350MPa and sintering at temperatures ranging from 973K to 1173K for 1h, 3h and 5h. The macro-interface between Al-Mg and Al-Mg/ Al2O3 composite was macroscopically well-bonded compared to that between Al-Mg and Al-Mg/SiC composite under same sintering conditions. The bonding of macro-interface became better as the sintering time and temperature increased, resulting in that the bimodal-structured materials sintered at 1173K for 5h showed the relative density of nearly 100%. In addition, the higher sintering temperature was, the more irregular macro-interface was. The microhardness of macro-interface area was in between the Al- Mg and composites, which was independent of the sintering temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3