Microstructure and Mechanical Properties of Twin-Roll Strip Cast Mg Alloys

Author:

Park Sung S.1,Bae Geun Tae1,Lee Jung G.1,Kang Dae H.1,Shin Kwang Seon2,Kim Nack J.3

Affiliation:

1. Pohang University of Science and Technology

2. Pohang University of Science

3. Pohang University of Science and Technology (POSTECH)

Abstract

Development of wrought Mg alloys, particularly in sheet form, is essential to support the growing interest for lightweight components in the automotive industry. However, development of Mg alloy sheets has been quite slow due to the complexity of sheet production originated from limited deformability of Mg. In this respect, twin-roll strip casting, a one-step processing of flat rolled products, can be an alternative for the production of Mg alloy sheets. In this study, AZ31 and experimental ZM series alloys are twin-roll strip cast into 2 mm thick sheets. The microstructure of the as-cast AZ31 alloy sheet consists of columnar zones near the roll side and equiaxed zones in the mid-thickness region. On the other hand, as-cast ZM series alloy sheets show equiaxed dendritic structure through the thickness of sheet. These alloys were subjected to various thermo-mechanical treatments and their tensile properties were evaluated. Twin-roll strip cast AZ31 alloy in H24 condition has equivalent yield and tensile strengths with similar ductility compared to commercial ingot cast AZ31-H24 alloy, indicating that twin-roll strip casting is a viable process for the fabrication of Mg alloy sheets. The experimental ZM series alloys have a large volume fraction of fine dispersoid particles in the microstructure, resulting from the beneficial effect of twin-roll strip casting on microstructural refinement. It has been shown that the experimental ZM series alloys have superior tensile properties compared to commercial ingot cast AZ31-H24 alloy, suggesting the possibility of the development of new wrought Mg alloy sheets by twin-roll strip casting.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3