Affiliation:
1. Tokyo Institute of Technology
2. Kanazawa University
Abstract
Fully reversed tension-compression fatigue tests were performed on solid-solutioned Al-0.7mass%Mg single crystals with a single slip orientation under constant plastic-strain amplitudes. Dislocation microstructures were quantitatively examined by transmission electron microscopy. The cyclic stress–strain curve (CSSC) exhibited three distinct regions with a short plateau region in the intermediate plastic-strain amplitude range, and the plateau stress was 26MPa. Characteristic microstructures were developed corresponding to the three regions in the CSSC. Vein structure was observed at the low strain-amplitude region. In the plateau regime, the persistent slip bands (PSBs) were observed. Labyrinth structure was also observed at the higher strain-amplitude region. The plateau stress, the cyclic flow stress of PSBs, can be explained by considering not only the Orowan bowing stress and the dipole passing stress of screw dislocations but also solid-solution hardening by Mg atoms.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献