Tribological Properties of Ni/Cu Multilayers

Author:

Hattori Tomoya1,Kaneko Yoshihisa1,Hashimoto Satoshi1

Affiliation:

1. Osaka City University

Abstract

Sliding wear and hardness tests in Ni/Cu multilayers electrodeposited on polycrystalline copper substrate were carried out. The multilayers had a total thickness of 5 μm and an individual layer thickness from 5 to 100 nm. Hardness of the multilayers measured with a nanoindentation tester was found to be dependent on layer thickness. The multilayer with the layer thickness of 20 nm showed the highest value among them. It was found that the wear resistances of all the multilayers tested were higher than that of an electrodeposited nickel coating. It was also revealed that the specific wear rate of multilayers decreased with decreasing the layer thickness although the highest hardness was attained at the 20 nm layer thickness. Scanning ion microscope observation showed that the subsurface area kept the layered structure of nickel and copper even after sliding wear. The multilayer had plasticity sufficient to accommodate deformation coming from the sliding wear, because fine grains peculiar to severe plastic deformation process were formed near the worm surface.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3