Mechanical Properties of Dispersion-Hardened P/M Al-Mn-Cu-Mg-Zn Alloys at Elevated Temperature

Author:

Adachi Hiroki1,Osamura Kozo1,Kusui Jun2

Affiliation:

1. Kyoto University

2. Toyo Aluminum K.K.

Abstract

In order to improve the high-temperature strength of an Al-Cu-Mg alloy, Mn was added at supersaturation to form a high-density dispersion of an intermetallic phase. In the P/M Al-3.6Mn- 6.4Cu-3.6Zn-1.7Mg alloy (mass%), rod-like Al-Mn-Cu-Zn quaternary intermetallic phases (Q phase) several hundred nanometers in length were dispersed in the matrix. The chemical composition of the Q phase was determined by TEM/EDX to be 78.8Al-12Mn-8Cu-1.2Zn (at%). The crystal system, space group, and lattice parameters of the unit cell were identified to be orthorhombic, Cmcm and a = 0.76, b = 2.11, c = 1.25 nm, respectively, by Rietveld analysis. Since the matrix of the alloy obtained was of the Al-Cu-Mg-(Zn) system, age-hardening occurred by formation of a GPB zone at room temperature and 448 K. At the peak level of age-hardening at room temperature, the tensile strength at room temperature was 704 MPa, and the elongations were 8.0%. The high temperature strengths at 523 and 573 K were 319 and 141 MPa, respectively, and the elongations were 17 and 34%, respectively.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3