An Overview of Accomplishments and Challenges in Recrystallization and Grain Growth

Author:

Rollett Anthony D.1,Brahme Abhijit P.1,Roberts C.G.1

Affiliation:

1. Carnegie Mellon University

Abstract

The study of microstructural evolution in polycrystalline materials has been active for many decades so it is interesting to illustrate the progress that has been made and to point out some remaining challenges. Grain boundaries are important because their long-range motion controls evolution in many cases. We have some understanding of the essential features of grain boundary properties over the five macroscopic degrees of freedom. Excess free energy, for example, is dominated by the two surfaces that comprise the boundary although the twist component also has a non-negligible influence. Mobility is less well defined although there are some clear trends for certain classes of materials such as fcc metals. Computer simulation has made a critical contribution by showing, for example, that mobility exhibits an intrinsic crystallographic anisotropy even in the absence of impurities. At the mesoscopic level, we now have rigorous relationships between geometry and growth rates for individual grains in three dimensions. We are in the process of validating computer models of grain growth against 3D non-destructive measurements. Quantitative modeling of recrystallization that includes texture development has been accomplished in several groups. Other properties such as corrosion resistance are being related quantitatively to microstructure. There remain, however, numerous challenges. Despite decades of study, we still do not have complete cause-and-effect descriptions of most cases of abnormal grain growth. The response of nanostructured materials to annealing can lead to either unexpected resistance to coarsening, or, coarsening at unexpectedly low temperatures. General process models for recrystallization that can be applied to industrial alloys remain elusive although significant progress has been made for the specific case of aluminum alloy processing. Thin films often exhibit stagnation of grain growth that we do not fully understand, as well as abnormal grain growth. Grain boundaries respond to driving forces in more complicated ways than we understood. Clearly many exciting challenges remain in grain growth and recrystallization.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3