The Study of Thermal Boundary Condition for CFRP Pressure Vessel with Metallic Liner during Manufacture Process

Author:

Hu Zhao Hui1,Wang Rong Guo2,Ma Li2,Du Shan Yi2

Affiliation:

1. Beijing Composite Materials Co.,Ltd.

2. Harbin Institute of Technology

Abstract

The heat convection was considered the main heat exchange type in the autoclave where CFRP pressure vessel was cured in this analysis. To determine the heat convection coefficient, it needed the combination of theoretical calculation and temperature test. In the theoretical calculation, the determination of the heat convection coefficient was considered as an inversion problem of thermal conduction. By adjusting convection coefficient value in the finite element calculation, optimization method was employed to obtain a good agreement between calculated temperature and measured temperature. In the temperature test, the metallic liner of CFRP pressure vessel was used as test component to record temperature data which was compared with the calculated temperature. The calculated results reveal that the maximum value in convection coefficient sequence is 19.87 W/m2/K; the minimum value is 0.16 W/m2/K; the maximum temperature deviation between calculation and test is 1.67 °C. The results present the equivalent thermal boundary condition for the simulation of curing process of CFRP pressure vessel.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3