Enhanced Ductility due to Grain Refinement by Equal Channel Angular Extrusion in Automotive Aluminium Alloy 6016

Author:

McKenzie P.W.J.1,Lapovok Rimma1,Thomson Peter F.

Affiliation:

1. Monash University

Abstract

Equal Channel Angular Extrusion (ECAE) with varying levels of applied backpressure was used to refine the microstructure of commercial automotive aluminium alloy 6016 at room temperature using route BC and a 90° die. Before processing, the alloy was solution heat treated at 560°C for 1 hour to produce an initial average grain size of ~190μm (in the furnace cooled condition) and ~200μm (in the water quenched condition). Two needle-like secondary phase precipitates were observed predominantly at grain boundaries and identified as α-Fe Al12Fe3Si2 and β-Fe Al5FeSi. The ability of Al 6016 to accumulate strain by simple shear was found to be dependent upon both the heat treatment condition and level of applied backpressure. The furnace cooled (FC) condition was found to accumulate higher strains than the cold water quenched (WQ) condition (under the same applied backpressure) with higher levels of backpressure allowing both conditions to accumulate greater equivalent plastic strains. A series of static annealing experiments were performed on as-processed material to investigate the grain stability of the ultrafine grained structure obtained after ECAE. Grain growth was observed to occur at 250°C in the FC condition of Al 6016 after 12 passes of ECAE where the average grain size approached 1μm. The engineering strain to failure in elevated temperature tensile testing was found to be dependent upon the number of passes of ECAE, test temperature, strain rate and level of applied backpressure. Increasing the number of passes and level of applied backpressure during ECAE and decreasing the strain rate during testing was found to produce the greatest tensile ductilities at 200°C (FC condition) and 300°C (WQ condition).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference13 articles.

1. Aluminum for Automotive Body Sheet Panels (The Aluminum Association Inc., Washington DC, 1998).

2. Aluminum: The Corrosion Resistant Automotive Material (The Aluminum Association, Washington DC, 2001).

3. Technical Data Sheet: Anticorodal-121 AA 6016 (Alcan Rolled Products Automotive, Switzerland, 2002).

4. M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon: J. Mater. Sci. 36 (2001), p.2835.

5. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy, V. I. Kopylov: Russ. Metall. 1 (1981), p.99.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3