The Effects of Hot Band Annealing Temperature on the Texture of 1% an 2%Si Nonoriented Electrical Steels

Author:

Choi Jae Young1,Park Jong Tae2,Bae Byung Keun1,Kim Jae Kwan3

Affiliation:

1. POSCO Technical Research Laboratories

2. Electrical Steel Research Group

3. POSCO

Abstract

The effects of hot band annealing temperature on the texture of the 1% and 2%Si nonoriented electrical steel were investigated. Slab was hot rolled and then hot band annealed in the temperature range of 900°C~1100°C. The magnetic flux density and the core loss were improved by the hot band annealing because of the texture improvement. As the hot band annealing temperature was increased, the magnetic properties were improved. The microstructure of the hot band was composed of a recrystallized structure at the surface and a deformed structure near the middle plane. These hot bands were completely recrystallized after annealing above 1000°C. The main texture of the hot band was rotated cube and gamma-fibre. After hot band annealing, rotated cube changed to cube texture and gamma-fibre intensity gradually decreased. In the case of specimen without hot band annealing, rotated cube in the middle plane was changed to near {111}<112>texture and Goss texture in the surface to gamma fibre after final annealing. In the case of the hot band annealed at 900°C, Goss texture and cube texture were developed. After final annealing, the {111} and {112} texture was dramatically decreased as the hot band annealing temperature was increased. Although the total {100} texture intensity was not changed, Cube texture, {100}<001>, was strengthened and rotated cube texture, {100}<011>, weakened for 2% Si steel. However, 1% Si steel was opposed to 2% Si steel. The {110} texture was strengthened irrespective of hot band annealing temperature. As the hot band annealing temperature was increased, the Goss texture was strengthened, and this makes the anisotropy of the magnetic flux density bigger.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3