Texture Evolution during High Temperature Plane Strain Compression of High Silicon Steels

Author:

Rodriguez-Calvillo Pablo1,Houbaert Yvan2

Affiliation:

1. CTM - Technologic Centre

2. Ghent University

Abstract

High silicon steel is used for electrical applications because its electrical resistivity is increased and the magnetostriction is reduced. A silicon content up to 6.5 wt.-% gives excellent magnetic properties. The improvement of the magnetic properties stays in contrast with the lack of ductility of these alloys, making their thermo-mechanical processing difficult. The optimum final microstructure and texture depends on the final application of the material: extremely big grains with a Goss orientation ({110} <001>) are desired in transformers and grains with an average size of 100 -m and cube component ({100} <001>) are used in electrical motors. A series of plane strain compression (PSC) tests were performed on 3 electrical steels, with a silicon content from 1.8 to 4.1 wt.-%, in a temperature range of 800 to 1100°C, strain rates between of 0.5 and 5 s-1. Reductions and time between deformation and quenching were also varied in order to study the recrystallisation progress. Apparent activation energies for hot working, calculated using the hyperbolic sine equation, was in good agreement with literature and higher than the activation energy for self diffusion in iron. These values increase with the silicon content. The high temperature texture evolution was investigated by means of electron back scattering Diffraction (EBSD) technique, which allows the quantification of important texture components in function of the thermo-mechanical parameters applied during hot rolling and the plane strain compression tests. The hot rolled microstructures have shown an average grain size of 140 -m and a texture with a maximum on the cube fibre ({001} <-1-10>). The conventional α (<110> // RD) / γ (<111> // ND) fibre texture was developed after plane strain compression and their intensities depend on the deformation temperature and reduction. A similar tendency was observed for the fraction of static recrystallised grains.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference18 articles.

1. G. Lyudkovsdy, P. K. Rastogi and M. Bals: Journal of Metals Vol. (1986), p.18.

2. D. Ruiz, T. Ros-Yanez, R. E. Vandenverghe and Y. Houbaert. Steel Research Int. Vol. 76 (2005), p.21.

3. M. S. Loveday, G. J. Mahon, B. Roebuck, C. M. Sellars, and M. R. van der Winder: Measurement Good Practice Guide No. 27 (National Physical Laboratory, UK, April 2000).

4. G. E. Dieter: Mechanical Metallurgy (McGraw-Hill Book Company, London, 1988).

5. J. Park and J. A. Szpunar: Acta Materialia Vol. 51 (2003), p.3037.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3