Monte Carlo Simulation to Macro Stress Evaluation and Micro Strain Analysis by Neutron and Synchrotron Radiation Diffraction

Author:

Sprauel Jean Michel1

Affiliation:

1. Aix Marseille Universités

Abstract

Neutron and synchrotron strain or stress evaluations are reliable when the probe volume is completely immersed in the studied material. However, acquisitions carried out close to interfaces are much more difficult to analyze. Under these conditions, it is indeed very difficult to characterize precisely the volume analyzed by the radiation and finally to define the measured depth. To solve this problem, a complete Monte Carlo simulation of neutron spectrometers and synchrotron experiments has been developed. This method allows defining precisely the size and shape of the probe used. It permits then predicting the evolution of the diffracted intensity versus the position of this volume in the matter. The calculations finally let to define the real analyzed depth, accounting for the local conditions of diffraction and absorption in the material. The method is illustrated by neutron and synchrotron experiments carried out to characterize stress fields existing close to interfaces. The simulations also permit predicting the shape of diffraction profiles that would be observed on perfect specimens. Such information can then be used to correct the instrumental broadening existing in real experiments. This allows a fine Fourier analysis of the diffraction peaks recorded for several orders of reflection and finally permits defining the mean size of the crystallites and the root mean squares of the strains of second and third kind. Such information is useful to characterize and analyze the mechanical behavior of materials.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3