Residual Stresses of Friction Stir Welded 2024-T4 Joints

Author:

Li Ting1,Shi Qing Yu1,Li Hong Ke1,Wang Wei2,Cai Zhi Peng1

Affiliation:

1. Tsinghua University

2. University of Electronic Science and Technology of China

Abstract

Friction stir welding (FSW) is a solid-state joining technique which can produce high-quality joints efficiently. The residual stresses in FSW are generated due to the effect of both the uneven temperature field and of the tool force, which is different from that in fusion welding. In this study the residual stresses of 3mm-thick 2024-T4 aluminum alloy FSW joints have been investigated by using the Hole-drilling method. To reduce the influence of drilling upon the experimental results, annealed stress-free 2024 aluminum alloy plates were drilled; the relieved strains were measured and were subtracted from the total strains measured from the joints. The results showed that the longitudinal residual stresses in the joint were much larger than the transverse residual stresses; high longitudinal tensile residual stresses were concentrated near the tool shoulder direct affected zone and asymmetrically distributed at the different sides of the weld line; i-e, high at the advancing side and relatively low at the retreating side. Outside the tool shoulder direct affected zone, the longitudinal residual stresses decreased rapidly and became compressive residual stresses away from the weld line; the peak of the longitudinal residual stresses was 164.5MPa.The mechanism of the generation of the residual stresses was analyzed preliminarily.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3