Deformation and Fracture Behavior of Surface Oxide Scale on Fe-13Cr Alloy in Hot-Rolling Process

Author:

Hidaka Y.1,Anraku T.1,Otsuka Nobuo1

Affiliation:

1. Sumitomo Metal Industries Ltd.

Abstract

The behavior of the surface oxide scale on steel products during hot rolling process influences the surface properties of final products. To investigate the deformation and the fracture behavior of surface oxide scale of Fe-13Cr alloy, a hot rolling test was carried out. The oxide scale rolled out was observed in detail by using TEM. The specimen was hot-rolled after oxidation at 1100 for 90 minutes in air. The hot rolling tests with two conditions (. The hot rolling test of the outer scale {=whole layer scale} , . The hot rolling test of the inner scale that removed the outer scale) were carried out. The rolling reduction rate was 25, 44, 58, and 68%. The outer scale was composed of Fe2O3 and F3O4, and the inner scale was composed of Fe3O4, FeCr2O4, and a small amount of Fe2SiO4. Fe2SiO4 formed along the grain boundaries of the other oxides (Fe3O4, FeCr2O4) was observed by TEM. In the test , Fe2O3 of the outer scale was pulverized to fine particle that looks like red powder, and Fe3O4 of the outer scale was cracked by hot rolling. A ductility-like behavior was observed in the inner scale (Test ). That is, it was found by the SEM observation that porosity and micro cracks of the surface oxide disappeared gradually according to the increase in the rolling reduction. It was thought that the porosity and the micro cracks eased the compression stress caused by hot rolling. In the case of high reduction rate, FeSi2O4 ,which is a low melting point oxide, formed on grain boundary caused grain boundary slipping. When the rolling reduction is very high, plastic deformation by dislocation occurred in Fe3O4 and FeCr2O4. However, these oxides were broken, when their plasticity would not be able to accept considerably high rolling reduction.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference14 articles.

1. Samsonov edd.: the oxide manual(1960).

2. T. Honma: Bulletin of theJapan institute of metals, Vol. 15, No. 12, (1976).

3. T. Honma: Boushoku-gijyutu, Vol. 25 pp.251-265 (1976).

4. T. Aitou, T. Yokote and R. Onodera: J. the JSTP, Vol. 42, No. 485, p.574, (2001).

5. Wakai: Yougyou-kyoukaishi, Vol. 94, p.721(1986).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3