Affiliation:
1. Osaka Prefecture University
Abstract
Nb and/or Cr added Ni3(Si,Ti) as well as unalloyed Ni3(Si,Ti) intermetallic thin foils (i.e., Ni3(Si,Ti), Ni3(Si,Ti)+Nb, Ni3(Si,Ti)+Cr and Ni3(Si,Ti)+Nb,Cr) were fabricated from arc-melted polycrystalline ingots by thermomechanical process and subsequent heavy cold-rolling. Tensile property at room temperature as well as at high temperature and oxidization behavior of the cold-rolled foils with a thickness of ~200μm were investigated. The Ni3(Si,Ti) and Ni3(Si,Ti)+Nb alloys showed a single-phase microstructure consisting of L12 phase, while the Ni3(Si,Ti)+Cr and Ni3(Si,Ti)+Nb,Cr alloys exhibited a two-phase microstructure with A1 (fcc) Ni solid solution phase within the L12 grains. All the cold-rolled foils showed high tensile strength (over 2GPa) at room temperature although no plastic elongation was observed. The addition of Nb and/or Cr slightly enhanced the room-temperature tensile strength of the Ni3(Si,Ti) alloy. On the other hand, the addition of Nb and/or Cr prominently enhanced high-temperature tensile strength as well as oxidization resistance, while the addition of Cr improved high-temperature elongation.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献