Effects of EB-PVD Process TGO Formation and Growth within Thermal Barrier Coatings

Author:

He Li Min1

Affiliation:

1. Beijing Institute of Aeronautical Materials

Abstract

It has been found that under oxygen partial pressure of ~2×10-6 kPa, the high-temperature oxidation of thermal barrier coatings (TBCs) occurred during an electron beam physical vapor deposition (EB-PVD) process for producing the TBCs top ceramic coating. In the present investigation, two modified bond coats (BCs) of NiCrAlY with Si addition, and NiCrAlY with Co and Hf additions, were developed by Arc Ion-plating technique to study the effects of the EB-PVD process on thermally grown oxide (TGO) formation and growth. The isothermal and cyclic oxidation tests were conducted and the cross-sectional morphologies of the specimens were examined to compare the high-temperature oxidation behaviors of the two TBCs. It was found that a mixed oxide layer have been developed in the as-deposited TBCs with a NiCrAlYSi BC. The mixed oxide layer mainly included Cr2O3, NiO, Al2O3 and their spinel. With the mixed oxide layer, TBCs with the NiCrAlYSi BC showed a superior high-temperature resistance on later high-temperature exposure to TBCs with NiCoCrAlYHf BC, where no mixed oxide layer was observed. The pre-formed mixed oxide layer apparently shortened the time to fully develop a protective α-Al2O3 layer and therefore restrained the TGO growth in TBCs.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference20 articles.

1. J.T. DeMasi-Marcin and D.K. Gupta: Surf. Coating Technol., Vol. 68/69, (1994), pp.1-9.

2. R.V. Hillery et al: National Materials Advisory Board Report, National Academy Press. Washington, DC, (1996).

3. W.Y. Lee, D.P. Stinton, C.C. Berndt, F. Erdogan, Y.D. Lee, and Z. Mutasim: J. Am. Ceram. Soc., Vol. 79, (1996), pp.3003-12.

4. S.M. Meier, D.M. Nissley, K.D. Sheffler, and T.A. Cruse: Trans, ASME, Vol. 114, (1992), pp.258-63.

5. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pittit: Prog. in Mater. Sci., Vol. 46, (2001), pp.505-553.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3