Failure Mechanisms on Exhaust Systems of Naval Gas Turbines

Author:

Martins Rui F.1,Branco Carlos M.2,Gonçalves-Coelho António M.1,Gomes Edgar C.2

Affiliation:

1. The New University of Lisbon

2. Instituto Superior Técnico

Abstract

Some exhaust systems of naval gas turbines have been periodically repaired due to thermal-fatigue crack propagation after entering into service. Those structures were made of austenitic stainless steel grade AISI 316L in thin wall plates, which were bent in rolling machines and welded with longitudinal and circumferential joints by means of shielded metal arc, TIG or MIG/MAG welding processes. The plate thickness is about 3.7 mm and the temperature on the exhaust system is approximately 500°C and 350°C in the critical zones, which are located in the lower and intermediate regions of the exhaust system.Several cracks were detected at the critical regions, near the weld toe of butt and T-welded joints. The stress concentration factors induced by the weld angle, toe radius and rolled surface finishing diminishes the fatigue life strength. Some cracked material samples were taken out from the exhaust system structure and were analysed with a Scanning Electron Microscope (SEM/EDS), in order to determine the failure mechanisms involved in the crack propagation process. Those results are presented in the paper. Several high temperature fatigue and creep tests were performed with CT specimens. The mechanisms of crack propagation on the CT specimens were studied by SEM and compared with the fracture surfaces obtained from the samples taken out from the structure. The carbide precipitation on the grain boundaries was also studied.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3