Affiliation:
1. ASCOMETAL CREAS
2. Par de Haute-Technologie-Sophia Antipolis
3. CEMEF - Center of Materials Forming
Abstract
The present work concerns the simulation of metallurgical evolutions in 3D multi-pass
forming processes. In this context, the analyzed problem is twofold. One point refers to the
management of the microstructure evolution during each pass or each inter-pass period and the
other point concerns the management of the multi-pass aspects (different grain categories, data
structure). In this framework, a model is developed and deals with both aspects. The model
considers the microstructure as a composite made of a given (discretized) number of phases which
have their own specific properties. The grain size distribution and the recrystallized volume fraction
distribution of the different phases evolve continuously during a pass or inter-pass period. With this
approach it is possible to deal with the heterogeneity of the microstructure and its evolution in
multi-pass conditions. Both dynamic and static recrystallization phenomena are taken into account,
with typical Avrami-type equations. The present model is implemented in the Finite Element code
FORGE2005®. 3D numerical simulation results for a multi-pass process are presented.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献