Interactions between Recrystallisation and Phase Transformations during Annealing of Cold Rolled Nb-Added TRIP-Aided Steels

Author:

Andrade-Carozzo V.1,Jacques Pascal J.1

Affiliation:

1. Université Catholique de Louvain

Abstract

Fe and Fe-C based alloys present the exceptional feature that the processing route can be adapted to lead to various phases that present antagonist mechanical properties ranging from soft ferrite to high strength martensite. Among the different deformation mechanisms that can be exhibited by these phases, the TRIP effect brings about large enhancements of the work-hardening rate. The current TRIP-assisted multiphase steels present a ferrite-based matrix with a distribution of islands of bainite and retained austenite obtained at the end of specific thermal or thermomechanical treatments. The present study aims at characterising the interactions occurring between ferrite recrystallisation and austenite formation during the intercritical annealing of cold rolled Nb-added TRIP-aided steels. It is shown that the addition of niobium retards the ferrite recrystallisation during heating. As a consequence, ferrite may not be completely recrystallised before the nucleation and growth of the austenite grains. Strong interactions between these phenomena can then be observed, i.e. a strong hindering of the ferrite recrystallisation due to the austenite formation. Furthermore, the heating rate from room temperature to the intercritical temperature range influences the thermodynamic conditions prevailing at the ferrite / austenite interface and dictates the phase proportions.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3