Ion Beam Assisted Deposition of TiN Thin Films on Si Substrate

Author:

Milinović V.1,Milosavljević M.2,Popović M.2,Novaković M.2,Peruško D.2,Radović I.2,Bibić N.2

Affiliation:

1. University of Göttingen

2. Vinča Institute of Nuclear Sciences

Abstract

In this paper we present a study of the formation of TiN thin films during the IBAD process. We have analyzed the effects of process parameters such as Ar+ ion energy, ion incident angle, Ti evaporation rates and partial pressure of N2 on preferred orientation and resistivity of TiN layers. TiN thin films were grown by evaporation of Ti in the presence of N2 and simultaneously bombarded with Ar+ ions. Base pressure in the IBAD chamber was 1⋅10-6 mbar. The partial pressure of Ar during deposition was (3.1 – 6.6)⋅10-6 mbar and partial pressure of N2 was 6.0⋅10-6 - 1.1⋅10-5 mbar. The substrates used were Si (100) wafers. TiN thin layers were deposited to a thickness of 85 – 360 nm at deposition rates of Ti from 0.05 to 0.25nm/s. Argon ion energy was varied from 1.5 to 2.0 keV and the angle of ion beam incidence from 0 to 30o. All samples were analyzed by Rutherford backscattering spectrometry (RBS). The changes in concentration profiles of titanium, nitrogen and silicon were determined with 900 keV He++ ion beam. The RBS spectra were analyzed with the demo version of WiNDF code. We have also used X-ray diffraction (XRD) for phase identification. The resistivity of samples was measured with four-point probe method. The results clearly show that TiN thin layer grows with (111) and (200) preferred orientation, depending on the IBAD deposition parameters. Consequently, the formation of TiN thin layers with wellcontrolled crystalline orientation occurs. Also, it was found that the variations in TiN film resistivity could be mainly attributed to the ion beam induced damage during the IBAD process.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3