Surface Roughness Characterisation Using Cutting Force Analysis, Regression and Neural Network Prediction Models

Author:

Núñez López Pedro Jose1,Simao Jorge2,Reina José M. Arenas3,de la Cruz C.1

Affiliation:

1. University of Castilla-La Mancha

2. Universidad de Castilla-La Mancha

3. Universidad Politecnica de Madrid

Abstract

The paper evaluates the feasibility of monitoring cutting forces for in-process prediction of the workpiece surface roughness, using regression based models (RG) and artificial neural network (ANN) techniques. The three orthogonal cutting force components (Fx, Fy, Fz) and the machined length L have been chosen as input variables. In the experimental test, AISI-1045 steel material was turned using a TiN coated carbide tool and employing a range of machining conditions (cutting speed: v=150, 200, 250 m/min; feed rate: f=0.15, 0.20, 0.25 mm/rev; depth-of-cut: d=1, 2, 3 mm). The results provided a wide range of measured cutting force and surface roughness values (Ra and Rq), which were used for adjustment and validation of the prediction models. Two prediction models were developed and subsequently the model accuracy was assessed by comparing the surface roughness predicted by the models with that measured by a 2D profilometer. The results highlighted the reasonably good fit given by both models, with the ANN based model providing best accuracy for surface roughness prediction. The prediction of the output surface roughness in an automated turning process was established and was found to be feasible by the monitoring of cutting forces.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3