Oxidation of Some Titanium Alloys in Air at Elevated Temperatures

Author:

Godlewska E.1,Mitoraj M.1,Jajko B.1

Affiliation:

1. AGH-UST

Abstract

This paper presents comparative studies on the performance of two titanium alloys (Ti- 6Al-1Mn, Ti-45.9Al-8Nb) in an oxidizing atmosphere at 700 oC and 800 oC. Testing procedure comprised thermogravimetric measurements at a constant temperature and in thermal cycling conditions (1-h and 20-h cycles at constant temperature followed by rapid cooling). The overall duration of the cyclic oxidation tests was up to 1000 hours. The oxidized specimens were analyzed in terms of chemical composition, phase composition, and morphology (SEM/EDS, TEM/EDS, XRD). The extent and forms of alloy degradation were evaluated on the basis of microscopic observation of specimen fractures and cross-sections. Selected specimens were examined by means of XPS, SIMS and GDS. Oxidation mechanism of Ti-46Al-8Nb was assessed a two-stage oxidation method using oxygen-18 and oxygen-16. Apparently, the oxidation of this alloy proceeded in several stages. According to XPS, already after quite short reaction time, the specimens were covered with a very thin oxide film, mainly composed of aluminum oxide (corundum). A thicker layer of titanium dioxide (rutile) developed underneath. These two layers were typical of the oxidation products formed on this alloy, even when tested in thermal cycling conditions. In general, the scale had a complex multilayer structure but it was thin and adherent. Under the continuous layer of titania, there was a fine-grained zone composed of mixed oxides. The alloy/scale interface was marked with niobium-rich precipitates embedded in a titanium-rich matrix. There were some indications of secondary processes occurring under the initial continuous oxide layers (e.g. characteristic layout of pores or voids). Thickness of inner scale layers clearly increased according to parabolic kinetics, while that of the outer compact layer (mainly TiO2) changed only slightly. The distribution of oxygen isotopes across the scale/alloy interface indicated two-way diffusion of the reacting species – oxygen inward and metals outward diffusion. Silicon deposited on Ti-6Al-1Mn alloy positively affected scale adhesion and remarkably reduced alloy degradation rate.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3